Fechar

@TechReport{BortoliFoCrisFach:2019:MoCaLa,
               author = "Bortoli Filho, Jaime and Cristaldo, Cesar Flaubiano da Cruz and 
                         Fachini Filho, Fernando",
                title = "Efeito da concentra{\c{c}}{\~a}o de nanopart{\'{\i}}culas na 
                         vaporiza{\c{c}}{\~a}o de gotas de ferrofluido e nanofluido: 
                         modelo para um calor latente efetivo",
          institution = "Instituto Nacional de Pesquisas Espaciais",
                 year = "2019",
                 type = "RPQ",
              address = "S{\~a}o Jos{\'e} dos Campos",
                 note = "{Bolsa PIBIC/INPE/CNPq}",
             keywords = "Aquecimento Magn{\'e}tico. Combust{\~a}o de gotas. Ferrofluidos, 
                         Heat. Droplet Combustion. Ferrofluids.",
             abstract = "Neste trabalho {\'e} avaliado o aquecimento, a 
                         vaporiza{\c{c}}{\~a}o e combust{\~a}o de uma gota de ferrouido 
                         (l{\'{\i}}quido com nanopart{\'{\i}}culas dispersadas) sob 
                         inu{\^e}ncia de um campo magn{\'e}tico externo alternado. Em 
                         resposta ao campo magn{\'e}tico, a movimenta{\c{c}}{\~a}o das 
                         part{\'{\i}}culas promove uma gera{\c{c}}{\~a}o calor no 
                         interior da gota devido {\`a} relaxa{\c{c}}{\~a}o 
                         magn{\'e}tica, que opera como fonte de calor. A 
                         gera{\c{c}}{\~a}o de calor ocorre devido ao atrito 
                         (dissipa{\c{c}}{\~a}o viscosa) entre as nanopart{\'{\i}}culas 
                         e o fluido adjacente a elas. Este movimento {\'e} ocasionado 
                         devido a rota{\c{c}}{\~a}o das part{\'{\i}}culas em resposta 
                         {\`a} altern{\^a}ncia do campo, que promove o alinhando e 
                         desalinhamento do dipolo das part{\'{\i}}culas, este movimento 
                         ocorre de maneira c{\'{\i}}clica respondendo {\`a}s 
                         propriedades do campo magn{\'e}tico. Desta forma, a presente 
                         an{\'a}lise considera dois mecanismos (fluxo de calor do ambiente 
                         externo e aquecimento magn{\'e}tico) fornecendo calor 
                         simultaneamente para o aquecimento e vaporiza{\c{c}}{\~a}o da 
                         gota. Esta an{\'a}lise considera um campo magn{\'e}tico de alta 
                         pot{\^e}ncia e uma distribui{\c{c}}{\~a}o uniforme das 
                         part{\'{\i}}culas, com isso, o interior da gota {\'e} 
                         homogeneamente aquecido. Contudo, ocorre a forma{\c{c}}{\~a}o de 
                         uma camada limite t{\'e}rmica na interface entre as fases 
                         l{\'{\i}}quida e gasosa. Para a an{\'a}lise dos efeitos no 
                         interior da camada limite uma reescala{\c{c}}{\~a}o {\'e} 
                         realizada nas coordenadas espaciais e temporais. No presente 
                         modelo, a gota {\'e} aquecida at{\'e} sua temperatura de 
                         ebuli{\c{c}}{\~a}o de maneira muito r{\'a}pida. Al{\'e}m 
                         disso, sob certas condic{\~o}es, a temperatura dentro da camada 
                         limite t{\'e}rmica torna-se maior que a temperatura na 
                         superf{\'{\i}}cie, o que leva a gota a atingir a temperatura de 
                         ebuli{\c{c}}{\~a}o em uma regi{\~a}o no interior da gota e 
                         n{\~a}o na superf{\'{\i}}cie. A diferen{\c{c}}a de temperatura 
                         entre a camada limite t{\'e}rmica e a superf{\'{\i}}cie, 
                         ocasiona um uxo de calor extra para a superf{\'{\i}}cie, 
                         resultando num aumento na taxa de vaporiza{\c{c}}{\~a}o. 
                         ABSTRACT: The present work aims to evaluate the heating, 
                         vaporization and combustion of a droplet of ferrofluid (liquid 
                         with dispersed nanoparticles) under the influence of an 
                         alternating external magnetic field. In response to the magnetic 
                         field, particle movement promotes heat generation within the 
                         droplet due to magnetic relaxation, which operates as a heat 
                         source. Heat generation occurs due to friction (viscous 
                         dissipation) between the nanoparticles and the fluid adjacent to 
                         them. This movement is caused due to the rotation of the particles 
                         in response to the field alternation, which promotes the alignment 
                         and misalignment of the particle dipole, this movement occurs in a 
                         cyclic manner responding to the magnetic field properties. Thus, 
                         the present analysis considers two mechanisms (external 
                         environment heat flux and magnetic heating) providing heat 
                         simultaneously for heating and vaporization of the droplet. This 
                         analysis considers a high power magnetic field and even particle 
                         distribution, so the inside of the droplet is homogeneously 
                         heated. However, a thermal boundary layer forms at the interface 
                         between the liquid and gas phases. For the analysis of the effects 
                         inside the boundary layer a rescaling is performed in the spatial 
                         and temporal coordinates. In the present model, the droplet is 
                         heated to its boiling temperature very quickly. In addition, under 
                         certain conditions, the temperature within the thermal boundary 
                         layer becomes higher than the surface temperature, which causes 
                         the drop to reach boiling temperature in a region within the drop 
                         rather than on the surface. The temperature difference between the 
                         thermal boundary layer and the surface causes an extra heat flux 
                         to the surface, resulting in an increase in vaporization rate.",
          affiliation = "{Universidade Federal do Pampa (UNIPAMPA)} and {Universidade 
                         Federal do Pampa (UNIPAMPA)} and {Instituto Nacional de Pesquisas 
                         Espaciais (INPE)}",
             language = "pt",
                pages = "25",
                  ibi = "8JMKD3MGP3W34R/3U33ED2",
                  url = "http://urlib.net/ibi/8JMKD3MGP3W34R/3U33ED2",
           targetfile = "JAIME BARTOLI.pdf",
        urlaccessdate = "27 abr. 2024"
}


Fechar